A Survey on Drug-Target Interaction Prediction Methods Analysis of Prediction Mechanisms for Drug Target Discovery

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Discovery of Putative Leads for Drug Repositioning through Drug-Target Interaction Prediction

De novo experimental drug discovery is an expensive and time-consuming task. It requires the identification of drug-target interactions (DTIs) towards targets of biological interest, either to inhibit or enhance a specific molecular function. Dedicated computational models for protein simulation and DTI prediction are crucial for speed and to reduce the costs associated with DTI identification....

متن کامل

NRWRH for Drug Target Prediction∗

Drug-target interaction prediction is an important problem for the development of novel drugs and human medical improvement. Many supervised and semi-supervised methods are proposed to uncover the relation between drugs and targets. Under the hypothesis that similar drugs target similar target proteins and the framework of Random Walk with Restart, the method of Networkbased Random Walk with Re...

متن کامل

ALADIN: A New Approach for Drug-Target Interaction Prediction

Due to its pharmaceutical applications, one of the most prominent machine learning challenges in bioinformatics is the prediction of drug–target interactions. State-of-the-art approaches are based on various techniques, such as matrix factorization, restricted Boltzmann machines, network-based inference and bipartite local models (BLM). In this paper, we extend BLM by the incorporation of a hub...

متن کامل

Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction

In pharmaceutical sciences, a crucial step of the drug discovery process is the identification of drug-target interactions. However, only a small portion of the drug-target interactions have been experimentally validated, as the experimental validation is laborious and costly. To improve the drug discovery efficiency, there is a great need for the development of accurate computational approache...

متن کامل

Globalized Bipartite Local Learning Model for Drug-Target Interaction Prediction

Computational methods provide efficient ways to predict possible interactions between drugs and targets, which is critical in drug discovery. Supervised prediction with bipartite Local Model recently has been shown to be effective for prediction of drug-target interactions. However, this pure “local” model is unapplicable to new drug or target candidates that currently have no known interaction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal for Research in Applied Science and Engineering Technology

سال: 2018

ISSN: 2321-9653

DOI: 10.22214/ijraset.2018.3057